Fast and Accurate Taxonomic Assignments of Metagenomic Sequences Using MetaBin

نویسندگان

  • Vineet K. Sharma
  • Naveen Kumar
  • Tulika Prakash
  • Todd D. Taylor
چکیده

Taxonomic assignment of sequence reads is a challenging task in metagenomic data analysis, for which the present methods mainly use either composition- or homology-based approaches. Though the homology-based methods are more sensitive and accurate, they suffer primarily due to the time needed to generate the Blast alignments. We developed the MetaBin program and web server for better homology-based taxonomic assignments using an ORF-based approach. By implementing Blat as the faster alignment method in place of Blastx, the analysis time has been reduced by severalfold. It is benchmarked using both simulated and real metagenomic datasets, and can be used for both single and paired-end sequence reads of varying lengths (≥45 bp). To our knowledge, MetaBin is the only available program that can be used for the taxonomic binning of short reads (<100 bp) with high accuracy and high sensitivity using a homology-based approach. The MetaBin web server can be used to carry out the taxonomic analysis, by either submitting reads or Blastx output. It provides several options including construction of taxonomic trees, creation of a composition chart, functional analysis using COGs, and comparative analysis of multiple metagenomic datasets. MetaBin web server and a standalone version for high-throughput analysis are available freely at http://metabin.riken.jp/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ProViDE: A software tool for accurate estimation of viral diversity in metagenomic samples

Given the absence of universal marker genes in the viral kingdom, researchers typically use BLAST (with stringent E-values) for taxonomic classification of viral metagenomic sequences. Since majority of metagenomic sequences originate from hitherto unknown viral groups, using stringent e-values results in most sequences remaining unclassified. Furthermore, using less stringent e-values results ...

متن کامل

Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a nave Bayesian classifier

Current methods to identify unknown insect (class Insecta) cytochrome c oxidase (COI barcode) sequences often rely on thresholds of distances that can be difficult to define, sequence similarity cut-offs, or monophyly. Some of the most commonly used metagenomic classification methods do not provide a measure of confidence for the taxonomic assignments they provide. The aim of this study was to ...

متن کامل

Evaluation of a Hybrid Approach Using UBLAST and BLASTX for Metagenomic Sequences Annotation of Specific Functional Genes

The fast development of next generation sequencing (NGS) has dramatically increased the application of metagenomics in various aspects. Functional annotation is a major step in the metagenomics studies. Fast annotation of functional genes has been a challenge because of the deluge of NGS data and expanding databases. A hybrid annotation pipeline proposed previously for taxonomic assignments was...

متن کامل

The genomic underpinnings of eukaryotic virus taxonomy: creating a sequence-based framework for family-level virus classification

BACKGROUND The International Committee on Taxonomy of Viruses (ICTV) classifies viruses into families, genera and species and provides a regulated system for their nomenclature that is universally used in virus descriptions. Virus taxonomic assignments have traditionally been based upon virus phenotypic properties such as host range, virion morphology and replication mechanisms, particularly at...

متن کامل

Rapid identification of high-confidence taxonomic assignments for metagenomic data

Determining the taxonomic lineage of DNA sequences is an important step in metagenomic analysis. Short DNA fragments from next-generation sequencing projects and microbes that lack close relatives in reference sequenced genome databases pose significant problems to taxonomic attribution methods. Our new classification algorithm, RITA (Rapid Identification of Taxonomic Assignments), uses the agr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012